Mathematik 10 Abels

Kopfübung

- Setze x = 1.5 in $y = x^3$ ein
- Setze y = 1.5 in $y = x^3$ ein
- Löse $x = y^3$ nach y auf

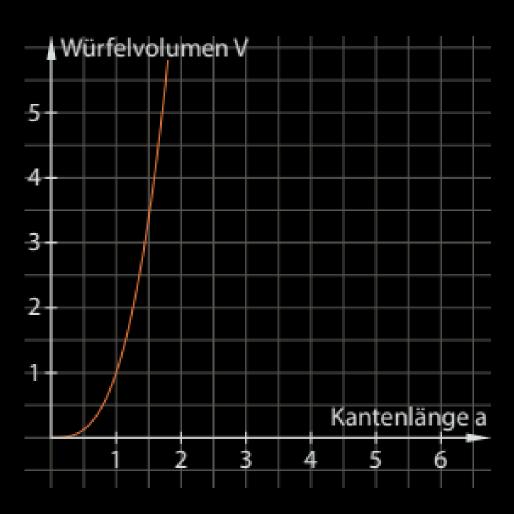
Was ist eine Wurzelfunktion?

Sybille überlegt:

"Wenn ich das Volumen eines Würfels aus der Kantenlänge a berechnen will, dann rechne ich $V = a^3$. Wenn ich umgekehrt aus dem Würfelvolumen V die Kantenlänge a ausrechnen will, muss ich die 3. Wurzel ziehen, also $a = \sqrt[3]{V}$."

Gib mehrere Wertepaare für die beiden Zuordnungen Würfelvolumen → Kantenlänge und Kantenlänge → Würfelvolumen an.

Lies am Graphen näherungsweise eine Kantenlänge zu einem Volumen von 3 Volumeneinheiten ab.

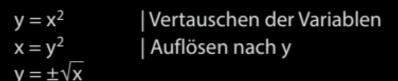


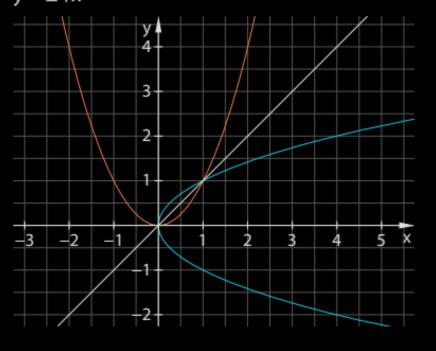
Umkehrzuordnung und Umkehrfunktion

Vertauscht man bei einer Funktion f die Ausgangswerte und die Funktionswerte, so erhält man die Umkehrzuordnung.

Ist die Umkehrung eindeutig, so ist die Umkehrzuordnung eine Funktion, die sogenannte Umkehrfunktion f^{-1} .

Die Graphen von f und f^{-1} gehen durch Spiegelung an der 1. Winkelhalbierenden auseinander hervor.





Wurzelfunktion

Eine Funktion f mit $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$ und $n \in \mathbb{N}, n \ge 2$ nennt man Wurzelfunktion.

Definitionsbereich: D = R₀⁺

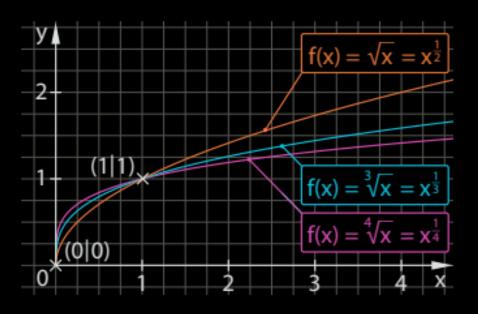
• Wertebereich: $W = \mathbb{R}_0^+$

Gemeinsame Punkte: [0|0], [1|1]

• Symmetrie: keine Symmetrie

Monotonie: Die Graphen steigen für

alle $x \ge 0$.

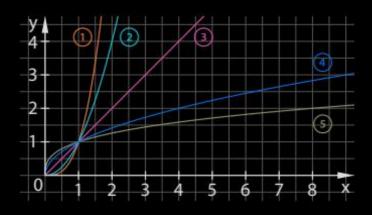


Fun39

 In der Wertetabelle sind gerundete Funktionswerte der quadratischen und der kubischen Wurzelfunktion angegeben.

х	0	<u>1</u> 8	1 4	1/2	1	2	4	8
$\sqrt{\mathbf{x}}$		0,35		0,71		1,41		2,83
³ √ X			0,63	0,79		1,26	1,59	

- a) Vervollständige in deinem Heft die Wertetabelle ohne Taschenrechner.
- b) Zeichne die Graphen in ein gemeinsames Koordinatensystem. Beschreibe Gemeinsamkeiten und Unterschiede.
- 2. Betrachte die Funktion f mit $f(x) = x^4$ im Definitionsbereich $D = \mathbb{R}_0^+$.
 - a) Bestimme die Funktionsgleichung der Umkehrfunktion f⁻¹.
 - b) Zeichne die Graphen von f und f^{-1} mithilfe von Wertetabellen.
 - c) Erkläre, warum man eine Wertetabelle von f^{-1} erhält, wenn man die beiden Zeilen einer beliebigen Wertetabelle von f vertauscht.
- 4. Ordne die Funktionsterme den abgebildeten Graphen ① bis ⑤ zu. Begründe deine Wahl.



Hausaufgabe

Fun40,41

Gegeben sind eine Funktion f und ihr Definitionsbereich Df. Bestimme die Gleichung der Umkehrfunktion f^{-1} . Gib den Definitions- und den Wertebereich von f^{-1} an.

a)
$$f(x) = 4x$$
; $D_f = \mathbb{R}$

b)
$$f(x) = x - 7$$
; $D_f = \mathbb{R}$

a)
$$f(x) = 4x$$
; $D_f = \mathbb{R}$ b) $f(x) = x - 7$; $D_f = \mathbb{R}$ c) $f(x) = \frac{1}{3}x + 5$; $D_f = \mathbb{R}$

d)
$$f(x) = x^4$$
; $D_f = \mathbb{R}_0^+$

d)
$$f(x) = x^4$$
; $D_f = \mathbb{R}_0^+$ e) $f(x) = 4x^2$; $D_f = \mathbb{R}_0^+$ f) $f(x) = -x^2 - 6$; $D_f = \mathbb{R}_0^+$

11. Umkehrfunktionen von Potenzfunktionen mit negativen Exponenten

Bestimme die Gleichung der Umkehrzuordnung von f. Gib an, welche Einschränkungen des Definitionsbereichs notwendig sind, damit die Umkehrzuordnung eine Funktion ist.

a)
$$f(x) = x^{-2}$$

b)
$$f(x) = x^{-3}$$