Mathematik 7 Abels

Kopfübung

Zeichne nach Augenmaß folgende Winkel:

$$\alpha = 45^{\circ}$$
; $\beta = 60^{\circ}$; $\gamma = 90^{\circ}$; $\delta = 135^{\circ}$; $\epsilon = 180^{\circ}$

• Zeichne ein Dreieck ABC mit $\overline{AB} = 3.5$ cm und $\overline{AC} = 3.5$ cm.

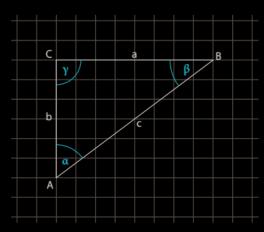
Wie fit bist du?

Winkel

Dreiecke, Vierecke und Symmetrie

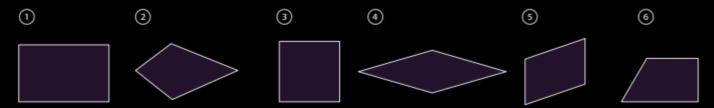
Parallelen

Vermischtes


Fun66,67 | Winkel

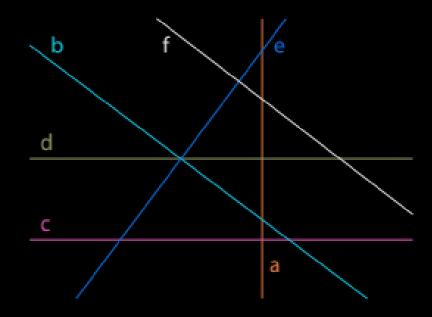
- 1. a) Zeichne nach Augenmaß folgende Winkel: $\alpha = 45^\circ$; $\beta = 60^\circ$; $\gamma = 90^\circ$; $\delta = 135^\circ$; $\epsilon = 180^\circ$
 - b) Miss die gezeichneten Winkel und schreibe die gemessene Größe an jeden Winkel.
 - c) Gib jeweils an, um welche Winkelart es sich handelt.
- Zeichne den Winkel α in der angegebenen Größe.
 Teile α in zwei gleich große Winkel und gib deren Größe an.
 - a) $\alpha = 90^{\circ}$
- b) $\alpha = 60^{\circ}$
- c) $\alpha = 70^{\circ}$
- d) $\alpha = 130^{\circ}$
- e) $\alpha = 148^{\circ}$

- Die Zeiger einer Uhr lassen sich als Schenkel zweier Winkel interpretieren.
 - a) Gib die Winkelart und (wenn möglich) die Größe des jeweils kleineren Winkels bei folgenden Uhrzeiten an: 14:00 Uhr; 8:00 Uhr; 9:00 Uhr; 6:00 Uhr.
 - b) Gib für einen spitzen, einen rechten, einen stumpfen und einen überstumpfen Winkel jeweils zwei zugehörige Uhrzeiten an.


- 4. Übertrage das Dreieck ABC in dein Heft.
 - a) Miss die drei Winkel α , β und γ und ordne sie der Größe nach.
 - b) Entscheide, welche Winkelart bei α , β und γ vorliegt.
 - Miss die drei Seitenlängen a, b und c des Dreiecks ABC und ordne diese der Größe nach.
 - d) Verlängere die Seiten des Dreiecks über die Eckpunkte hinaus.
 Es entstehen neue Winkel (außerhalb des Dreiecks).
 Miss deren Größe.

Fun66,67 | Dreiecke, Vierecke und Symmetrie

- 5. a) Zeichne ein Dreieck ABC mit $\overline{AB} = 3.5$ cm und $\overline{AC} = 3.5$ cm.
 - b) Zeichne ein Dreieck ABC mit $\triangleleft \beta = 60^{\circ}$ und $\triangleleft \gamma = 60^{\circ}$.
- Ordne den abgebildeten Vierecken eine passende der Vierecksarten Quadrat, Rechteck, Parallelogramm, Raute, Trapez und Drachenviereck zu. Verwende jede Vierecksart nur einmal.


- 7. Gib alle Vierecksarten (Quadrat, Rechteck, Parallelogramm, Raute, Trapez und Drachenviereck) an, für die die Eigenschaft immer zutrifft.
 - a) Alle vier Seiten sind gleich lang.
 - c) Gegenüberliegende Seiten sind parallel zueinander.
 - e) Benachbarte Seiten sind gleich lang.
 - g) Gegenüberliegende Seiten sind gleich lang.

- b) Alle vier Winkel sind rechte Winkel.
- d) Die Diagonalen haben die gleiche Länge.
- f) Es gibt zwei parallele Seiten.
- h) Die Diagonalen stehen senkrecht aufeinander.

Fun66,67 III Parallelen

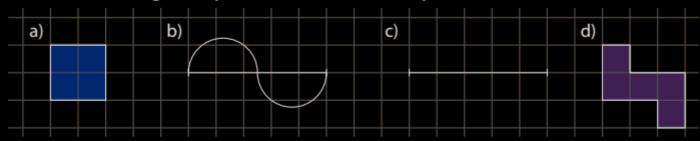
- Überprüfe mit dem Geodreieck, welche der Geraden in der Abbildung
 - a) parallel zueinander sind,
 - b) senkrecht zueinander sind.
- Zeichne in ein Koordinatensystem eine Gerade g ein, die durch die Punkte P(1|1) und Q(3|4) verläuft.
 (2 Kästchen = 1 Einheit)
 - Zeichne in das Koordinatensystem
 - a) eine Gerade h ein, die durch den Punkt A(3|2) parallel zur Geraden g verläuft,
 - b) eine Gerade k ein, die durch den Punkt B(0|3) parallel zur Geraden h verläuft. Gib den Abstand des Punktes A (des Punktes B) von der Geraden g an.

Fun66,67 IV Vermischtes

10. Gegeben sind folgende Figuren.

Quadrat

Achteck


Parallelogramm

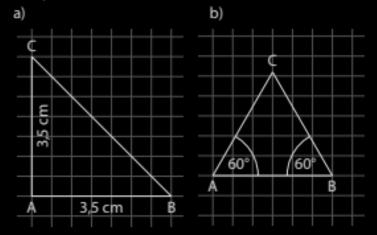
Fünfeck

- a) Nenne Paare von Strecken, die jeweils zueinander parallel verlaufen.
- b) Bestimme den Abstand des Punktes Y von der Strecke BC.
- c) Bestimme den Abstand des Punktes Z von der Strecke OP.
- 11. Übertrage die Figur in dein Heft und gib an, ob sie achsensymmetrisch, punktsymmetrisch oder beides ist. Trage alle Symmetrieachsen und das Symmetriezentrum ein.

12. Überprüfe, ob die roten Geraden in der Abbildung zueinander parallel sind.

Fun66,67

S. 66, 2.

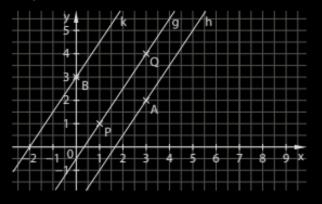

a) 14:00 Uhr:	spitzer Winkel	60°
8:00 Uhr:	stumpfer Winkel	120°
9:00 Uhr:	rechter Winkel	90°
6:00 Uhr:	gestreckter Winkel	180°
b) Mögliche Lös	ungen:	
1:00 Uhr:	spitzer Winkel	30°
12:00 Hbr	spitzer Winkel	200

rechter Winkel 90° 3:00 Uhr: 15:00 Uhr: rechter Winkel 90° 150° 5:00 Uhr: stumpfer Winkel 16:00 Uhr: stumpfer Winkel 120° 7:00 Uhr: überstumpfer Winkel 210° 20:00 Uhr: überstumpfer Winkel 240°

S. 66, 4,

- a) $\beta = 37^{\circ}$; $\alpha = 53^{\circ}$; $\gamma = 90^{\circ}$
- b) α, β: spitze Winkel; y: rechter Winkel
- c) b = 3 cm; a = 4 cm; c = 5 cm
- d) bei A: 127°, 53°, 127° bei B: 143°, 37°, 143° bei C: 90°, 90°, 90°

S. 66, 5.

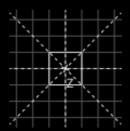


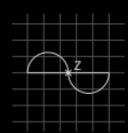
- S. 188, 6.
- 1): Rechteck; 2): Drachenviereck; 3): Quadrat; 4): Raute; ③: Parallelogramm; ⑥: Trapez
- S. 67., 7.
- a) Quadrat, Raute
- b) Quadrat, Rechteck
- c) Quadrat, Rechteck, Parallelogramm, Raute
- d) Quadrat, Rechteck, Raute
- e) Quadrat, Raute, Drachenviereck
- f) Quadrat, Rechteck, Raute, Parallelogramm, Trapez
- g) Quadrat, Rechteck
- h) Quadrat, Raute, Drachenviereck

S.67, 8.

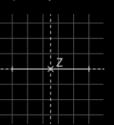
- a) b || f; c || d.
- b) $a \perp c$; $a \perp d$; $b \perp e$; $e \perp f$.

S. 67, 9.

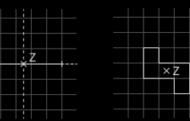



S. 67, 10.

- a) AB || CD; AD || BC; EF || IJ; FG || JK; GH || KL; HI || EL; MN || OP; NO || MP; RS || UT; QU || ST.
- b) 0,75 cm
- c) 0,75 cm


S.67, 11

a) achsen- und b) punktsymmetrisch punktsymmetrisch



c) achsen- und punktsymmetrisch

d) punktsymmetrisch

S.67, 12. Die roten Geraden sind zueinander parallel.

Hausaufgabel

Bearbeite auf Fun34,35 zu den Themen I-IV jeweils 2 Aufgaben.