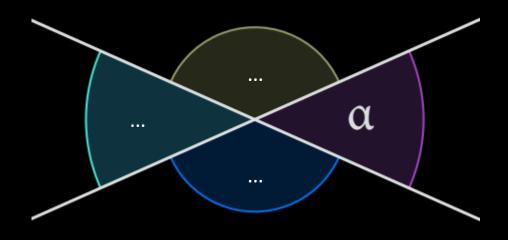
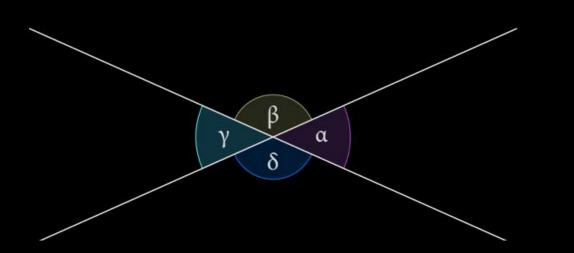
Mathematik 7 Abels

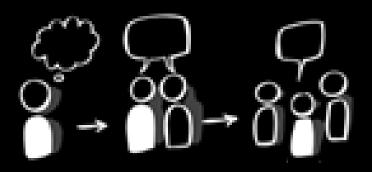
Kopfübung


• α Alpha

ß ...

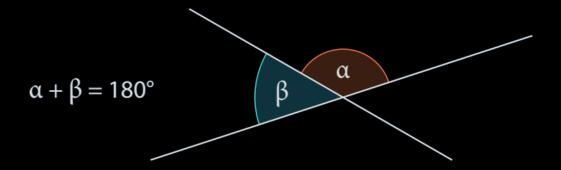
ν ...


δ ...


ε ...

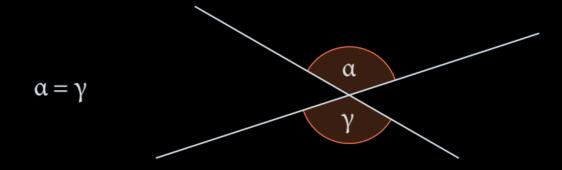
• Ein Kreis besteht aus ... Grad. Dies nennt man einen ... Winkel.

Neben- und Scheitelwinkel



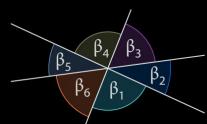
Zeichne zwei Geraden, die sich in einem Punkt schneiden. Miss die Winkel α , β , γ und δ . Was kannst du über Winkel aussagen, die nebeneinander liegen wie α und β ? Was kannst du über die Winkel sagen, die gegenüber liegen wie β und δ ? Ist das Zufall oder ist das immer so?

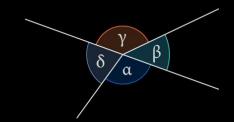
Neben- und Scheitelwinkel


Nebenwinkelsatz

Nebenwinkel ergänzen sich zu 180°.

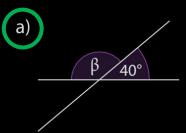
Scheitelwinkelsatz

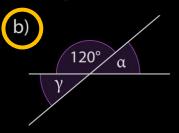

Scheitelwinkel sind gleich groß.

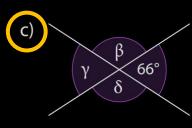


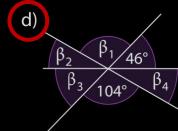
Fun69

- 2. (a) Bestimme alle Nebenwinkelpaare und alle Scheitelwinkelpaare.
- b) Bestimme alle Scheitelwinkelpaare. Begründe, warum es keine Nebenwinkelpaare gibt.

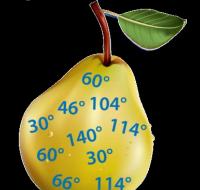

c) Bestimme alle Nebenwinkelpaare. Begründe, warum es keine Scheitelwinkelpaare gibt.




3. Ermittle die fehlenden Winkelgrößen.


 α_2

 α_3



Hinweis zu 3: Hier findest du

Hier findest du die fehlenden Winkelgrößen.

- 4. Berechne alle Winkelgrößen α , β , γ und δ an einer Geradenkreuzung, wenn gilt:
 - a) $\alpha = 50^{\circ}$

(b) $\beta = 145^{\circ}$

c) $\gamma = 120^{\circ}$

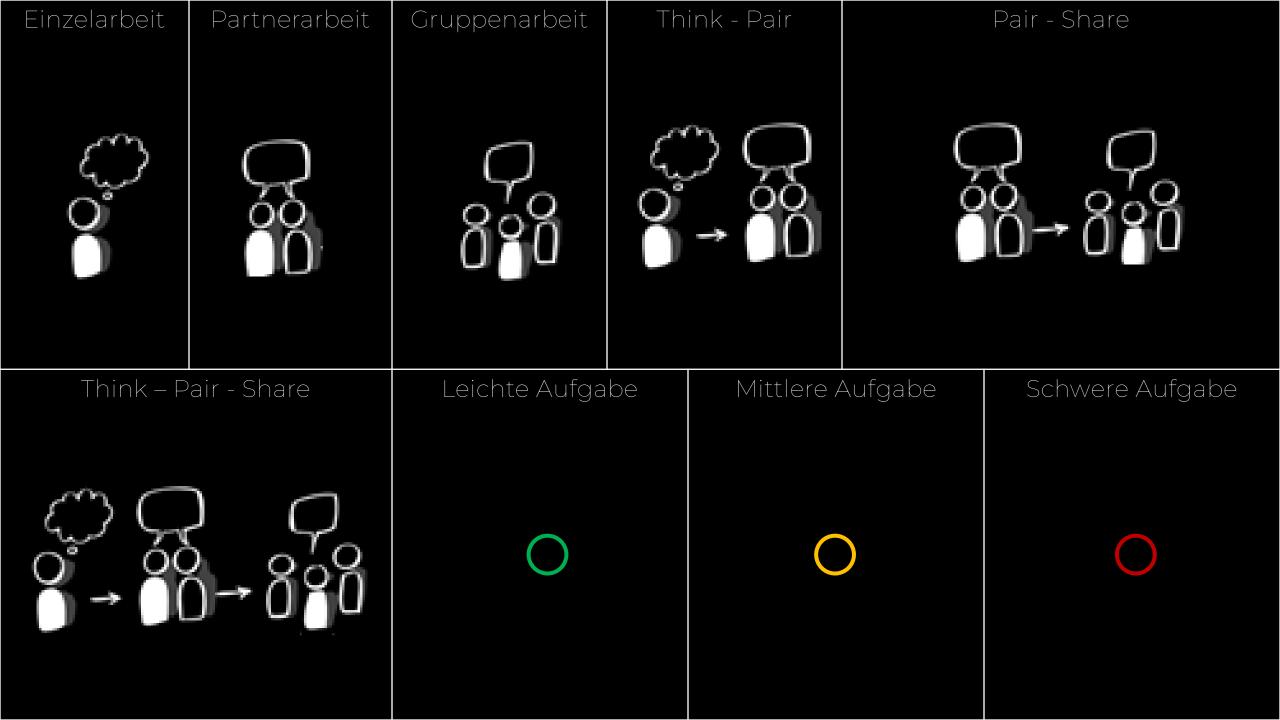
d) $\delta = 90^{\circ}$

Fun69

Seite 69 | Aufgabe 2

- a) Nebenwinkelpaare: α_1 und α_2 ; α_2 und α_3 ; α_3 und α_4 ; α_4 und α_1 Scheitelwinkelpaare: α_1 und α_3 ; α_2 und α_4
- b) β₁ und β₄; β₂ und β₅; β₃ und β₆; Es gibt keine Nebenwinkelpaare, da sich in diesem Fall keine zwei benachbarten Winkel zu 180° addieren. Der Grund dafür: Es schneiden sich mehr als zwei Geraden in einem Punkt.
- c) Nebenwinkelpaare: β und γ ; δ und α ; Es schneiden sich hier nicht zwei Geraden in einem Punkt, sondern unterschiedliche Strecken treffen dort zusammen. Die Schnittwinkel sind dadurch unterschiedlich.

Seite 69 | Aufgabe 3


- a) $\beta = 140^{\circ}$
- b) $\gamma = \alpha = 60^{\circ}$
- c) $\delta = \beta = 114^{\circ}; \gamma = 66^{\circ}$
- d) $\beta_1 = 104$ °; $\beta_2 = \beta_4 = 30$ °; $\beta_3 = 46$ °

Seite 69 | Aufgabe 4

- a) $\alpha = \gamma = 50^{\circ}$; $\beta = \delta = 130^{\circ}$
- b) $\alpha = \gamma = 35^{\circ}$; $\beta = \delta = 145^{\circ}$
- c) $\alpha = \gamma = 120^{\circ}; \beta = \delta = 60^{\circ}$
- d) $\alpha = \gamma = \beta = \delta = 90^{\circ}$

A Fun69,70

- 8. Entscheide, ob die Aussagen wahr oder falsch sind und begründe deine Antwort.
 - a) Ein stumpfer Winkel kann kein Nebenwinkel sein.
 - b) Ein überstumpfer Winkel kann ein Scheitelwinkel sein.
 - c) Ein überstumpfer Winkel kann ein Nebenwinkel sein.
 - d) Der Nebenwinkel eines spitzen Winkels ist immer ein überstumpfer Winkel.
 - e) Ein Scheitelwinkelpaar kann aus zwei stumpfen Winkeln bestehen.
 - f) Ein rechter Winkel kann kein Nebenwinkel sein.
- 11. Zeichne eine Gerade g und auf ihr einen Punkt P.
 - a) Zeichne in P einen spitzen Winkel, der halb so groß ist wie sein Nebenwinkel.
 - b) Zeichne in P einen stumpfen Winkel und seinen Scheitelwinkel.
 - c) Zeichne in P einen überstumpfen Winkel und seinen Scheitelwinkel.

