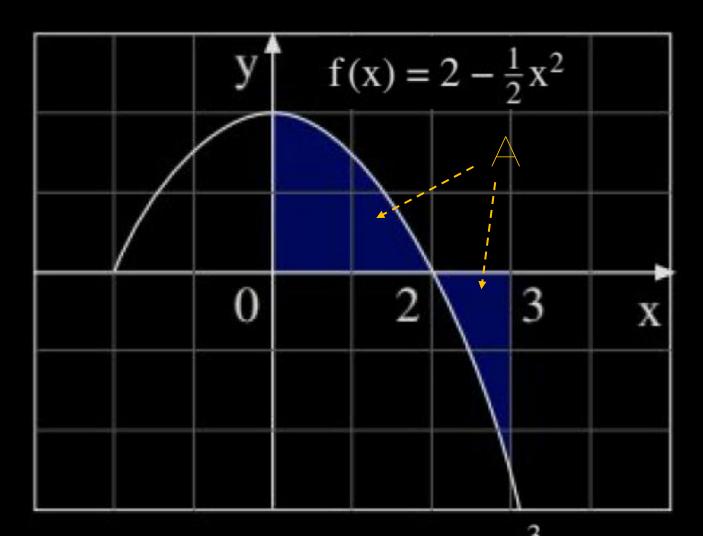
Mathematik Q1 Abels

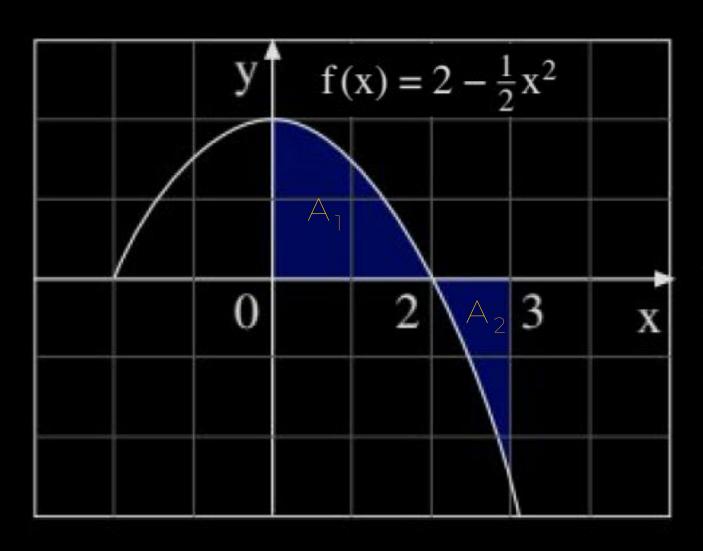
Kopfübung


•
$$\int \left(2 - \frac{1}{2}x^2\right) dx = \cdots$$

•
$$5x - 3 = 0$$

•
$$2 - \frac{1}{2}x^2 = 0$$

$$-\frac{1}{2}x^3 + 2x = 0$$


Bestimmte Integrale und Flächeninhalte

$$\int_{0}^{3} (2 - \frac{1}{2}x^{2}) dx = \left[2x - \frac{1}{6}x^{3}\right]_{0}^{3} = \left(\frac{3}{2}\right) - (0) = \frac{3}{2}$$

$$\Rightarrow \mathbb{A} = \frac{3}{2} = 1,5$$

<u>Flächeninhalte</u>

Berechnung der Teilfläche A1:

$$\int_{0}^{2} (2 - \frac{1}{2}x^{2}) dx = \left[2x - \frac{1}{6}x^{3}\right]_{0}^{2}$$
$$= \left(\frac{8}{3}\right) - (0) = \frac{8}{3} \Rightarrow \mathbf{A}_{1} = \frac{8}{3}$$

Berechnung der Teilfläche A2:

$$\int_{2}^{3} (2 - \frac{1}{2}x^{2}) dx = \left[2x - \frac{1}{6}x^{3}\right]_{2}^{3}$$
$$= \left(\frac{3}{2}\right) - \left(\frac{8}{3}\right) = -\frac{7}{6} \Rightarrow A_{2} = \frac{7}{6}$$

Gesamtinhalt:

$$A = A_1 + A_2 = \frac{8}{3} + \frac{7}{6} = \frac{23}{6} \approx 3,83$$

Übung 1

Gesucht ist der Inhalt der Fläche, welche vom Graphen von f und der x-Achse über dem Intervall [0; 4] eingeschlossen wird.

1.
$$\int_{0}^{\pi/2} -\cos x dx = [-\sin x]_{0}^{\pi/2} = -1, \quad \int_{\pi/2}^{4} -\cos x dx = [-\sin x]_{\pi/2}^{4} = -\sin 4 + 1 \approx 1,76, \quad A \approx 2,76$$

Nullstellen

Grad	0	1	2	3	4
Funktion					
Beispiel					
Anzahl möglicher Nullstellen					
Berech- nung der Nullstellen					

Nullstellen

Grad	0	1	2	3	4
Funktion	konstant	linear	quadratisch	kubisch	biquadratisch
Beispiel	f(x)=4	f(x) = 3x + 5	$f(x) = 2x^2 - 5x + 3$	$f(x) = 2x^3 + 4x^2 - x + 8$	$f(x) = 2x^4 + 5x^3 - x^2 + 9x - 1$
Anzahl möglicher Nullstellen	0; unendlich viele	7	0; 1; 2	1; 2; 3	0; 1; 2; 3; 4

Faktorisierung (nur wenn

von richtiger Form: d=0)

Substitution (nur wenn von

richtiger Form: b=d=0)

q. Ergänzung

pq-Formel

abc-Formel

Term-

umformung

Berech-

nung der

Nullstellen

Nullstellen berechnen

Gemischte Übungen

https://de.serlo.org/mathe/26410/aufgaben-zur-bestimmung-von-nullstellen

Faktorisieren

https://unterrichten.zum.de/wiki/Nullstellen_bestimmen/Ausklammern

Substitution

https://de.serlo.org/mathe/122106/aufgaben-zur-bestimmung-von-nullstellen-mittels-substitution